

eISSN: 2951-2174

RESEARCH

리간드가 광가교된 CulnS₂/ZnS 양자점 기반 근적외선 발광다이오드

김현빈, 금진호, 강문성*

서강대학교 화공생명공학과

NIR Light-Emitting Devices Based on Ligand-Crosslinked CulnS₂/ZnS Quantum Dot Emissive Layer

Hyeonbin Kim, Jinho Keum, Moon Sung Kang*

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea

*Correspondence: kangms@sogang.ac.kr

1. 서론

근적외선은 인간의 눈에 보이지 않는 파장 범위에 속하지만, 주변 환경의 센싱 및 감지 장치, 보안 장치, 근거리 통신, 생체 이미징 등 다양한 분야에서 활용될 수 있다[1-5]. 이에 따라 근적외선을 효율적으로 방출 할 수 있는 광원 개발에 대한 관심이 증가하고 있다. 다만, 해당 파장 에너지 대역의 밴드갭을 갖는 반도체 의 종류가 제한적이어서 광원 제작에 응용될 수 있는 발광소재가 제한적이다. 양자점은 양자 구속 효과를 기반으로 단순한 크기 조절로도 밴드갭을 조절할 수 있는 반도체 소재로, 높은 발광 효율과 좁은 발광 스펙 트럼을 갖추어 발광 소재로서 활용 가능성이 매우 유 망한 소재이다[6-7]. 초기에는 Cd, Pb, Hg 등의 중금속 원소를 포함한 양자점 시스템이 주로 개발되었지만, 양자점 기술의 혁신과 양자점 기반 장치의 상업화에 따라 환경 규제에 영향을 받지 않는 친환경적인 원소 로 구성된 양자점 시스템에 대한 관심이 커지고 있다.

중금속 원소를 포함하지 않는 벌크 CuInS₂는 830 nm의 파장에 해당하는 밴드갭을 가지며, 비교적 간단 한 습식 결정 성장 방법(colloidal nanocrystal synthesis)으로 수 나노미터 크기의 양자점을 제조할 수 있다[8-10]. 이렇게 제조된 CuInS₂ 양자점은 크기 조절 을 통해 830 nm보다 더 짧은 파장의 발광 소재로 활용 할 수 있으며[9,11], CuInS₂ 양자점 합성 과정에서 Se 전구체를 추가하여 CuInSeS 양자점을 생성하면, 기존 의 CuInS₂ 양자점보다 더 긴 파장의 발광 소재로도 활 용할 수 있다[9]. 따라서, CuInS₂ 양자점은 발광 소자, 태양 전지, 에너지 소자, 생체 영역 등에서 다양한 용 도로 활용되고 있다[12].

습식 결정 성장 방법을 통해 제조된 양자점 표면에 는 유기 리간드(예: dodecanethiol, oleylacid, oleylamine 등)가 도입되어 있어, CuInS₂을 포함한 각종 양 자점은 기본적으로 다양한 유기 용매에 쉽게 분산될 수 있다. 이로 인해 양자점은 소자 제작 시 잉크젯 프 린팅, 스핀 코팅 등의 저비용 공정을 통해 적층될 수 있다. 그러나, 용액 공정으로 형성된 양자점 층은 본질 적으로 후속 용액 공정 과정에서 손상될 수 있는 위험 을 갖고 있다[13]. 이를 피하기 위해서는 용액 공정에 서 사용되는 용매를 신중하게 선택해야 하며, 이는 후 보 기능층의 선택 범위를 제한하게 된다.

본 연구에서는 근적외선 발광을 하는 코어/쉘(core/ shell) 구조의 CuInS₂/ZnS 양자점 표면에 자외선 노출 시 가교 반응이 진행될 수 있는 광가교 리간드(photocrosslinkable ligand, PXL)를 일부 도입하였다. 리간드 간의 가교 반응이 일어나, 전체적으로 가교된 CuInS₂/ ZnS 양자점 층이 후속 용액 공정에 대해 최소한의 화 학적 손상을 겪게 됨을 확인하였다. 이 방법을 활용하 여 연속적인 용액 공정을 통해서도 (하부층의 화학적 손상을 최소화하면서) 발광소자를 제조하는 가능성을 보여주었다.

2. 연구방법

2.1. 근적외선 발광 CulnS2/ZnS 양자점 합성

2.1.1. CulnS₂/ZnS 양자점 합성

CuInS₂/ZnS 양자점의 합성은 기본적으로 앞서 발표 된 논문의 방법을 따라 진행하였으나[9], 부분적으로 변경을 하기도 하였다. 0.114 g의 copper(I) iodide와 0.1168 g의 indium(III) acetate를 10 mL의 1-dodecanethiol와 함께 3구 플라스크에 넣고 80℃로 가열한다. 해당 온도에 도달하면, 1시간 동안 진공 상태를 유지 하여 반응 시스템에 남아 있는 수분과 산소를 제거한 다. 이러한 디가싱(degassing) 과정이 완료되면 질소 환경을 형성하고, 이후 230℃로 온도를 올려주면 용액 의 색이 시간이 지남에 따라 노란색에서 짙은 갈색으 로 변한다. 이 과정을 통해 CuInS₂ 코어가 형성된다. 코어 형성 반응은 230℃에서 25분 동안 진행된다.

합성된 코어에는 두 종류의 ZnS 전구체를 이용하여

쉘을 도입한다[10]. 첫 번째 ZnS 전구체를 제조하기 위해 1.1009 g의 zinc acetate(Zn(Ac)₂)을 12 mL의 oleic acid와 함께 3구 플라스크에 넣고 140℃로 가열 한 후, 1시간 동안 진공 상태로 유지한다. 디가싱 과정 이 완료되면 질소 환경을 형성하고, 110℃ 이상의 온 도를 유지하면서 30 mL의 1-octadecene을 3구 플라스 크에 주입한다. 그 후 110℃를 유지하면서 추가로 1시 간 동안 디가싱 과정을 진행한 뒤, 다시 질소 환경을 형성하여 첫 번째 ZnS 전구체 형성을 완료한다. 두 번 째 ZnS 전구체를 제조하기 위해 1.2647 g의 zinc stearate를 6 mL의 1-octadecene과 3 mL의 oleic acid 와 함께 3구 플라스크에 넣고 100℃로 가열한다. 해당 온도에 도달한 후 온도를 유지하면서 1시간 동안 진공 상태를 유지하고, 다시 질소 환경을 형성하여 두 번째 ZnS 전구체 형성을 완료한다.

CulnS₂/ZnS 양자점 합성을 위해 앞서 합성된 CulnS₂ 코어 용액의 온도를 215℃ 이하로 유지하면서 첫 번째 ZnS 전구체 용액 21 mL을 1 mL/min의 속도로 천천히 주입한다. 그 후 온도를 220℃로 설정하고 2시간 동안 반 응을 유지한다. 반응이 완료되면 온도를 215℃ 이하로 유지하면서 두 번째 ZnS 전구체 용액 9 mL을 1 mL/min 의 속도로 주입한다. 그 후 온도를 240℃로 설정하고 1시 간 30분 동안 반응을 유지한다. 이후 온도를 빨리 45℃까 지 냉각시켜 반응을 종료한다.

합성된 용액은 비친화성 용매인 acetone을 이용하여 침전시키고, 8,000 rpm으로 원심분리하여 회수한다. 회 수된 양자점은 다시 친화성 용매인 toluene에 분산시킨 후 다시 acetone을 이용하여 침전시키고, 원심분리하여 회수한다. 이러한 정제 과정을 최소 5번 반복하여 합성에 사용된 전구체들을 제거한다. 최종적으로 침전된 양자점 은 chloroform에 분산시킨 뒤 질소 환경에서 보관한다.

2.1.2. 합성된 CulnS₂/ZnS 양자점의 분석 합성된 양자점의 흡광 및 발광 스펙트럼은 Jasco사 의 V-730 모델 UV-Vis-NIR 분광기와 Scinco사의 FS-2 모델 photoluminescence(PL) 분광기를 사용하여 측정되었다. 또한, 양자점의 크기와 구조는 JEOL사의 JEM-2100F 모델 고해상도 전자 현미경(high resolution transmission electron microscope, HRTEM)을 사 용하여 분석되었다.

2.2. 부분 리간드 치환을 통한 PXL의 도입

2.2.1. 액상 리간드 치환을 통한 PXL 도입

합성된 CuInS₂/ZnS 양자점의 표면에는 oleic acid 와 dodecanethiol 리간드가 도입되어 있다. 이중 일부를 이전 논문에서 보고된 바 있는 PXL인 4-((10-mercaptodecyl)thio)phenyl)(4-(pyrrolidin-1-yl)phenyl)methan one (NS-BP)로 액상 치환하여 도입한다[14]. 이를 위 해 NS-BP를 양자점 대비 10wt% 비율로 chloroform에 용해시키고, 이 용액을 1 mL의 양자점 용액과 혼합한 후 30분 동안 소니케이션(sonication) 처리한다. 이 과 정에서 oleic acid 리간드와 NS-BP 리간드의 부분적인 치환이 발생한다. 부분 치환이 완료된 양자점 용액에 4 mL의 acetone을 첨가하고, 8,000 rpm으로 5분간 원 심분리하여 침전된 양자점을 회수한다. 회수된 양자점 을 1 mL의 chloroform에 분산시킨 후, 4 mL의 acetone 을 사용하여 다시 원심분리하여 회수한다. 최종적으로 회수한 양자점을 chloroform에 분산시킨 후 질소 환경 에서 보관한다.

2.2.2. PXL이 도입된 CulnS₂/ZnS 양자점의 분석

Varian 사 UNITY-INOVA 500 모델의 proton nuclear magnetic resonance(1H-NMR)을 이용하여 액상 치환 전후의 양자점의 리간드를 분석하였다. 또한, TA Instrument 사 TA Q50 모델의 thermogravimetric analysis (TGA)를 이용하여 실제 양자점에 부착된 리간드의 함 량비를 정량화하였다.

2.3. CulnS₂/ZnS 양자점 층의 가교

2.3.1. CulnS₂/ZnS 양자점 층의 도포 및 가교

CuInS₂/ZnS 양자점 용액을 2,000 rpm으로 1분간 스 핀코팅하여 박막을 제작한다. 그 후 형성된 박막에 365 nm의 자외선을 5분간 노광시켜준다. 마지막으로 리간드의 가교가 이루어진 양자점 박막을 90℃에서 30 분간 어닐링시킨 뒤 상온까지 식혀준다.

2.3.2. 가교된 CulnS₂/ZnS 양자점 층의 분석

양자점 층의 가교정도는 양자점 층을 toluene(양자 점 용액의 모용매에 해당하며, 양자점층이 가교되지 않았을 경우 이를 손쉽게 녹여낼 수 있는 용매임)에 노 출시킨 뒤 박막의 두께 변화를 통해서 간적접으로 확 인하였다. 양자점의 표면 특성은 Park Systems사 NX7 모델의 원자힘현미경(atomic force microscope ,AFM) 을 이용하여 비접촉 방식으로 분석하였다.

2.4. CulnS₂/ZnS 양자점 기반 발광소자 제작

2.4.1. CulnS₂/ZnS 양자점 기반 발광소자 제작

Indium tin oxide(ITO)와 aluminum을 각각 소자의 두 전극으로 사용하였다. 우선 indium tin oxide(ITO) 가 패턴된 유리기판을 세척한 뒤 0.2 mL의 ZnO 나노 입자 용액을 도포 후 2,000 rpm으로 1분간 스핀코팅하여 박막을 제작하고, 200℃에서 30분간 어닐링(annealing)하여 잔여 용매를 제거한다. 기판의 온도가 40 ℃ 이하까지 식으면 기판을 글러브 박스로 옮겨 질 소 환경으로 바꿔준다. 0.2 mL의 합성 및 치환한 CuInS₂/ZnS 양자점 용액을 2,000 rpm으로 1분간 스핀 코팅하여 박막을 제작하고, 5분간 365 nm의 자외선에 노광시켜준다. 90℃에서 30분간 어닐링시켜주고 40℃ 까지 식혀준다. 이어서 8 mg/mL의 poly[(9,9-diocty lfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)

diphenylamine)](TFB) 용액을 0.2 mL 취해 4,000 rpm 으로 30초간 스핀코팅하여 박막을 제작한다. 형성된 박막을 90℃에서 30분간 어닐링시켜주고 40℃까지 식 혀준다. 최종적으로 고진공 열증착기를 사용하여 molybdenum oxide(MoO₃)와 aluminum을 각각 10/100 nm 의 두께로 증착한다.

2.4.2. CulnS₂/ZnS 양자점 기반 발광소자 평가

소자의 전류-전압-휘도 상관관계는 질소 환경에서 이뤄졌다. 소자로의 전압 공급과 전류 측정은 Keithley 사 2400 source measure unit을 통해 이루어졌으며, 소 자의 휘도는 Jadak사 PR655 모델의 scanning spectroradiometer를 통해 측정되었다.

3. 결과 및 고찰

쉘이 없는 CuInS₂ 양자점는 표면 안정성이 낮고, 발 광 효율이 낮다. 이를 보완하기 위해 CuInS₂ 코어에 격 자 상수가 유사한 ZnS 쉘을 추가하여 표면 안정성과 발광 효율을 높이는 전략을 사용했다. 총 두 번의 쉘을 쌓아 발광 효율을 높혔으며[10], 발광양자효율 47.3% 에 이르렀다. Fig. 1(a)는 앞서 설명한 합성 방법을 통 해 제작한 코어/쉘 구조의 CuInS₂/ZnS 양자점의 흡광 및 발광 스펙트럼을 보여준다. 두 스펙트럼 모두

Fig. 1. (a) Vis-NIR and PL spectra for CuInS₂/ZnS quantum dots, (b) TEM image of CuInS₂/ZnS quantum dots.

chloroform 용매에 분산되어 측정되었다. Fig. 1(b)는 합성된 양자점의 TEM 이미지로, 두 번 ZnS 쉘 도입 이후 평균 크기가 8.1 nm에 달하는 정사면체 입자라는 것을 확인하였다.

합성된 CuInS₂/ZnS 양자점은 oleic acid와 dodecanethiol 리간드와 결합되어 있다. 이때 Oleic acid 리 간드의 부착부(anchor)는 carboxylate이며, dodecanethiol 의 부착부는 thiol이다. 일반적으로 thiol기는 carboxylate기보다 CuInS2/ZnS 양자점 표면에 높은 결합력 을 가지므로[15], 이러한 특성을 이용하여 약하게 결합 된 oleic acid를 말단에 thiol이 도입된 NS-BP 리간드 로 액상 치환할 수 있었다(Fig. 2(a) 및 Fig. 2(b))[14]. Fig. 2(c)는 치환 전후 양자점 리간드의 NMR 분석 결 과를 보여준다. 치환 전에는 oleic acid의 이중결합에 의한 수소 피크와 dodecanethiol의 C-S 결합에 대한 수 소 피크가 관찰되었지만, 치환 후에는 oleic acid와 dodecanethiol의 피크뿐만 아니라 NS-BP에만 존재하 는 aromatic 피크와 pyrrolidine에 대한 피크도 관측되 었다. 이 분석 결과를 통해 NS-BP 리간드의 부분 치환 이 성공적으로 이루어졌음을 확인할 수 있었다. 또한 피크의 면적비를 통해 치환 전후의 리간드 상대적 비 율을 확인할 수 있었으며, 치환전에는 oleic acid:d odecanethiol=1:4.6의 비율이었으며, 지환 후에는 oleic acid:dodecanethiol:NS-BP=1:6.0:0.4의 비율을 가짐을 알 수 있었다.

NMR 분석으로 확인한 리간드 치환 전후 양자점 표 면에 존재하는 리간드 간의 상대적인 몰비율 변화 외 에도, NS-BP의 치환율을 파악하기 위해 TGA 분석을 수행하였고, 해당 결과는 Fig. 2(d)에 나타나 있다. 분 석 결과, 치환 전과 후의 CuInS₂/ZnS 양자점 표면에는 전체 질량의 약 40%에 해당하는 리간드가 결합되어 있음을 확인할 수 있었다. 이 결과와 앞서 NMR을 통 해 구한 비율을 통해 CuInS₂/ZnS 양자점 표면에는 Table 1에 해당하는 몰비율로 리간드가 결합되어 있음

Fig. 2. (a) Chemical structure of oleic acid and NS-BP ligands, (b) Schematic description of the ligand exchange process for CuInS₂/ZnS quantum dots, (c) NMR spectra for CuInS₂/ZnS quantum dots before (left) and after (right) the ligand exchange process, (d) TGA results for CuInS₂/ZnS quantum dots before (left) and after (right) the ligand exchange process.

을 파악할 수 있었다. 특히, 치환 후 CuInS₂/ZnS 양자 점의 표면에는 NS-BP가 5.4 mol% 정도 도입되었음을 확인할 수 있었다.

리간드 치환 및 분리/정제의 과정에서 양자점의 발

Table 1. The relative molar ratio of ligands (oleic acid, dodecanethiol, and NS-BP) attached to the surface of CuInS₂/ZnS quantum dots before and after the partial ligand-exchange step. Estimation was done based on the areal ratio of peaks corresponding to each ligands in the NMR spectra

mol%	Oleic acid	Dodecanethiol	NS-BP
Before exchange	17.9	82.1	-
After exchange	13.5	81.1	5.4

광 특성이 감소할 수 있는 염려가 있다[16]. 그러나, CuInS₂/ZnS 양자점은 NS-BP 리간드가 도입되어도 발 광 특성이 그대로 유지됨을 확인하였다(Fig. 3(a)). 이 처럼 발광 특성 열화없이 NS-BP가 도입된 CuInS₂/

Fig. 3. (a) PL spectra comparison for CuInS₂/ZnS quantum dots before and after undergoing the ligand exchange process, (b) Schematic description of the film formation process and UV-induced ligand-crosslinking for CuInS₂/ZnS quantum dots, (c) Schematic diagram illustrating the BP-based ligand-crosslinking reaction.

ZnS 양자점을 스핀코팅 하여 양자점 박막을 형성하였 다(Fig. 3(b)). 그 후 양자점 박막을 365 nm 자외선 광 원(2 mW/cm²)에 노출하여 PXL의 가교반응을 유도하 였다. Fig.3(c)에서 도식화된 것 같이, NS-BP 리간드가 자외선에 노출되면 benzophenone이 활성화되어 diradical이 생성된다. 주변에 alkyl 사슬이 존재한다면, carbonyl기의 라디칼이 alkyl 사슬에서 수소 원자를 추 출하여 benzophenone의 ketyl 라디칼과 alkyl 사슬의 라디칼이 형성된다. 이 두 라디칼은 화학겹합을 형성 하고, 이 과정으로 인해 전체적인 양자점 박막은 가교 된다[14].

가교된 CuInS₂/ZnS 양자점 박막의 내화학성 평가를 위해 박막을 chlorobenzene에 노출시킨 후 발생하는 두께 변화를 측정하였다. 여기서 chlorobenzene은 CuInS₂/ZnS 양자점을 안정적으로 분산시킬 수 있는 용매로 스핀코팅 용액의 모용매로 사용되었다. 우리는 chlorobenzene 노출 전후에 따른 양자점 박막의 두께 변화율을 film thickness retention ratio라고 정의하였 으며, 이를 통해 CuInS₂/ZnS 양자점 박막의 내화학성 을 정량화하였다. 가교가 충분히 이루어지지 않아 양 자점 박막에 내화학성이 형성되지 않았다면, chlorobenzene 노출 후 양자점 박막은 사실상 모두 제거될 것이다. 반면, 가교가 충분히 이루어져 양자점 박막에 내화학성이 새로 형성되었다면, chlorobenzene에 노출 후에도 양자점 박막의 두께 변화가 발생하지 않을 것 이다.

가교에 영향을 미치는 요인은 크게 두 가지가 있다. 우선 자외선 광원에 대한 노출 시간은 가교에 영향을 미치는 중요한 요소이다. 적절한 노출 시간을 선택하 여 가교 반응이 충분히 이루어지도록 해야 하는 것이 중요하나, 동시에 이것이 양자점의 발광 특성을 열화 시킬 수 있는 가능성도 고려해야 한다. 따라서 가교에 따른 양자점의 발광 특성 저하를 최소화하기 위해서는 적절한 자외선 노출 시간을 설정해야 한다. 또한, 양자

Fig. 4(a)는 NS-BP의 함량이 증가할수록 가교가 원 활하게 이뤄지지만, 동시에 발광특성이 감소함을 확인 하였다. 따라서 최적의 조건을 찾기 위해 film thickness retention ratio 값이 1이 되도록하는 최소의 NS-

Fig. 4. (a) Normalized PL intensity vs. film thickness retention ratio relation for CuInS₂/ZnS quantum dot films crosslinked with varying contents of NS-BP, (b) Normalized PL intensity vs. film thickness retention ratio relation for CuInS₂/ZnS quantum dot films crosslinked for different durations under 365 irradiation, (c) AFM image of a CuInS₂/ZnS quantum dot film (10 wt% of NS-BP) prior to crosslinking, (d) AFM image of the same film after crosslinking (5 min of irradiation under 365 nm UV source) and rinsing using chlorobenzene. BP 함량인 10 wt%를 도입하기로 하였다. Fig. 4(b)는 10 wt%의 NS-BP가 도입된 양자점의 가교를 위해 사 용한 365 nm 광원의 노출시간에 따라 확보한 양자점 박막의 PL 세기와 film thickness retention ratio를 비교 한 결과를 보여준다. 이 그래프에서는 노출시간이 길 어질수록 PL 세기가 감소함을 확인할 수 있었다. 또 한, CuInS₂/ZnS 양자점 박막의 화학적 내구성을 충분 히 확보하기 위해서는 최소한 5분 이상의 노출시간이 필요함을 알 수 있었다.

이렇게 설정된 최적의 NS-BP 함량 및 노광조건을 바탕으로 형성된 CuInS₂/ZnS 양자점 박막의 표면 구 조를 AFM 분석을 통해 살펴보았다. Fig. 4(c)는 10 wt%의 NS-BP가 도입되었지만 가교가 이루어지지 않 은 CuInS₂/ZnS 양자점 박막의 매끄러운 표면을 보여 준다(Rq 표면 거칠기=0.657 nm). Fig. 4(d)는 동일한 양자점 박막을 365 nm 자외선 광원에 5분간 노출한 후 추가로 chlorobenzne에 담근 후 확보한 양자점 박막 의 표면을 보여준다. 표면의 거칠기는 다소 증가하여 Rq=1.084 nm로 측정되었지만, 여전히 매끄러운 표면 이 형성되었음을 알 수 있다. 이 결과는 NS-BP를 이용 한 가교 반응을 통해 유기 용매에 대한 내화학성을 가 지는 CuInS₂/ZnS 양자점 박막이 원활하게 형성되었음 을 시사한다.

마지막으로, 우리는 ITO 투명전극, ZnO 나노입자 전자전달층, 가교된 CuInS₂/ZnS 양자점 박막, TFB 고 분자 정공전달층, MoO₃/Al 상부 전극으로 구성된 근 적외선 전계발광 소자를 제작하였다(Fig. 5(a))[17-18]. 주목해야할 점은 리간드 가교로 인해 화학적 내구성이 확보된 CuInS₂/ZnS 양자점 박막이 상부에 TFB 도포 공정에서 손상을 받지 않는다는 점이다. 이로 인해 양 자점 박막에 손상 없이 정공전달층이 안정적으로 형성 될 수 있었다.

기본적으로 전계발광은 발광층의 두께에 따라 일어 나는 발광 효율의 차이가 나타난다. 이는 전자와 전공 이 발광층에서 원활하게 만나는 재결합 영역(recom-

Fig. 5. (a) Schematic representation of a NIR- emitting device based on a crosslinked CuInS₂/ ZnS quantum dot film. (b) Current densityvoltage-luminance relations of light-emitting devices based on CuInS₂/ZnS quantum dot films with varying thicknesses.

bination zone)이 발광층의 두께에 따라 변하기 때문이 다. 따라서 발광 율을 키우기 위해 발광층의 두께를 조 절하여 소자를 제작하였다. 실험결과, 발광층이 얇을 수록 전계발광소자의 휘도(luminance)와 전류 밀도 (current density) 증가하는 경향을 확인하였다(Fig. 5(b)). CuInS₂/ZnS 양자점 박막의 두께를 10 nm로 설 정하였을때, 최대 34 cd/m²의 근적외선 발광을 달성할 수 있었다.

4. 결론

용액공정을 통한 양자점의 도포는 간편하고 비용적 측면에서 커다란 장점이 있는 방법이지만, 이후의 용 액공정 단계에서 손상될 수 있는 단점이 있다. 본 연구 에서는 양자점 리간드의 광가교 반응을 활용하여 이러 한 단점을 극복하기 위해 PXL을 도입하였다. 특히, CuInS₂/ZnS 양자점 표면에 자외선 노출 시 가교 반응 이 진행되도록 설계된 NS-BP PXL을 사용하여 양자점 층을 가교시켰다. 이를 통해 양자점 층은 후속의 용액 공정 과정에서 화학적 내구성을 가지게 되었다. 나아 가 이러한 전략이 연속적인 용액공정을 필요로 하는 근적외선 발광 소자 제작 공정에도 적용될 수 있다는 것을 확인하였다.

기호설명

- PXL: Photocrosslinkable ligand
- NS-BP: 4-((10-Mercaptodecyl)thio)phenyl)(4-(pyrroli din-1-yl)phenyl)methanone
- NMR: Nuclear magnetic resonance
- TGA: Thermogravimetric analysis
- AFM: Atomic force microscope
- TEM: Transmission electron microscope
- TFB: Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)]

ACKNOWLEDGEMENTS

Author Contributions

HK, JK, MSK were involved in experiments, analysis, and discussion. HK, JK, MSK drafted the manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2021R1A2C2008332).

Declarations of Competing Interests

The authors declare that they have no competing interests.

REFERENCES

 Guo, B.; Sheng, Z.; Hu, D.; Liu, C.; Zheng, H.; Liu, B. Through Scalp and Skull NIR-II Photothermal Therapy of Deep Orthotopic Brain Tumors

with Precise Photoacoustic Imaging Guidance. Adv. Mater. 2018, 30 (35), 1802591.

- [2] Zhao, J.; Zhong, D.; Zhou, S. NIR-I-to-NIR-II Fluorescent Nanomaterials for Biomedical Imaging and Cancer Therapy. J. Mater. Chem. B. 2018, 6 (3), 349-365.
- [3] Mela, C. A.; Lemmer, D. P; Bao, F. S.; Papay, F.; Hicks, T.; Liu, Y. Real-time Dual-modal Vein Imaging System. Int. J. Comput. Assist. Radiol Surg. 2019, 14, 203-213.
- [4] Zhang, N. N.; Lu, C. Y.; Chen, M. J.; Xu, X. L.; Shu, G. F.; Du, Y. Z. et al. Recent Advances in Near-Infrared II Imaging Technology for Biological Detection. J. Nanobiotechnol. 2021, 19 (1), 132.
- [5] Xie, N.; Hou, Y.; Wang, S.; Ai, X.; Bai, J.; Lai, X. et al. Second Near- Infrared (NIR-II) Imaging: A Novel Diagnostic Technique for Brain Diseases. Rev. Neurosci. 2022, 33 (5), 467-490.
- [6] Kim, J.; Roh, J.; Park, M.; Lee, C. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2023, 2212220.
- [7] Liu, M.; Yazdani, N.; Yarema, M.; Jansen, M.;
 Wood, V.; Sargent, E. H. Colloidal Quantum Dot Electronics. Nat. Electron. 2021, 4 (8), 548-558.
- [8] Lim, L. J.; Zhao, X.; Tan, Z. K. Non-Toxic CuInS₂/ZnS Colloidal Quantum Dot for Near-Infrared Light-Emitting Diodes. Adv. Mater. 2023, 2301887.
- [9] McDaniel, H.; Koposov, A. Y.; Draguta, S.; Makarov, N. S.; Pietryga, J. M.; Klimov, V. I. Simple Yet Versatile Synthesis of CuInSexS_{2-x} Quantum Dots for Sunlight Harvesting. J. Phys. Chem. C 2014, 118 (30), 16987-16994.

- [10] Yoon, S. Y.; Kim, J. H.; Jang, E. P.; Lee, S. H.; Jo, D. Y.; Kim, Y. et al. Systematic and Extensive Emission Tuning of Highly Efficient Cu-In-S-based Quantum Dots from Visible to Near Infrared. Chem. Mater. 2019, 31 (7), 2627-2634.
- [11] Zhong, H.; Bai, Z.; Zou, B. Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. J. Phys. Chem. Lett. 2012, 3 (21), 3167-3175.
- [12] Long, Z.; Zhang, W.; Tian, J.; Chen, G.; Liu, Y.; Liu, R. Recent Research on the Luminous Mechanism, Synthetic Strategies, and Applications of CuInS₂ Quantum Dots. Inorg. Chem. Front. 2021, 8 (4), 880-897.
- [13] Yang, J.; Hahm, D.; Kim, K.; Rhee, S.; Lee, M.; Kim, S. et al. High-Resolution Patterning of Colloidal Quantum Cots Via Non-destructive, Light-Driven Ligand Crosslinking. Nat. Commun. 2020, 11 (1), 2874.
- [14] Hahm, D.; Lim, J.; Kim, H.; Shin, J. W.; Hwang, S.; Rhee, S. et al. Direct Patterning of Colloidal Quantum Dots with Adaptable Dual-Ligand Surface. Nat. Nanotechnol. 2022, 17 (9), 952-958.
- [15] Choi, J.; Choi, W.; Jeon, D. Y. Ligand-exchange-Ready CuInS₂/ZnS Quantum Dots via Surface-Ligand Composition Control for Film-type Display Devices. ACS Appl. Nano Mater. 2019, 2 (9), 5504-5511.
- [16] Park, S. Y.; Lee, S.; Yang, J.; Kang, M. S. Patterning Quantum Dots via Photolithography: A Review. Adv. Mater. 2023, 2300546.
- [17] Kim, J. H.; Yang, H. High-efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding

7%. Chem. Mater. 2016, 28 (17), 6329-6335.

[18] Bai, Z.; Ji, W.; Han, D.; Chen, L.; Chen, B.; Shen, H. et al. Hydroxyl-Terminated CuInS₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chem. Mater. 2016, 28 (4), 1085-1091.